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Introduction

Van Gogh, V. (1888), Fishing Boats on the Beach at
Les Saintes-Maries-de-la-Mer [oil on canvas]
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Abstract. The amount of data available nowadays in the sports field is

hard to comprehend using classic analytic methods. This calls for the de-
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Data-Driven Visual Performance
Analysis in Soccer: An Exploratory
Prototype

Alejandro Benito Santos’, Roberto Theron', Antonio Losada’, Jaime E. Sampaio® and
Carlos Lago-Peias™
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sports analysis at elite levels. Evolution of technology allows collection of increasingly
larger and more specific data sets related to sport activities in cost-effective and
accessible manner. Al this information is minutely scrutinized by thousands of analysts
around the globe in search of answers that can in the long-term help increase the
performance of individuals or teams in their respective competitions. As the volume
of data increases in size, so does the complexity of the problem and the need for
suitable tools that leverage the cognitive load involved in the investigation. It is proven
that visualization and computer-vision techniques, correctly applied to the context of
a problem, help data analysts focus on the relevant information at each stage of the
process, and generally lead to a better understanding of the facts that lie behind the
data. In the current study, we presented a software prototype capable of assisting
researchers and performance analysts in their duty of studying group collective behavior
in soccer games and trainings. We used geospatial data acquired from a professional
match to demonstrate its capabilities in two different case studies. Furthermore, we

able to reach conclusions regarding 7R R5CS (oo proved the efficiency of the difierent visualzation techniques implemented
games, and behaviors that show u; e in the prototype and demonstrated how visual analysis can effectively improve some of
‘;:;‘;Z;f’;‘: the basic tasks employed by sports experts on their daily work, complementing more
traditional approaches.
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teams and opponents, as well as assess potential prospects. Recenty, the time pressure of this
process and the constant increase in the amount of available data has demanded for a major
emphasis in the visualization methods. In fact, technical staffs are nowadays expected to capture,
process, analyze, and visualize data to provide fast assimilated information for coaching purposes.
Current technology allows capturing data from players’ positions, either in competition or training
scenarios, with very acceptable degrees of accuracy. These technological advances can use radio

2018 | W

[1] A. G. Losada, R. Therdn, and A. Benito, ‘BKViz: A Basketball Visual Analysis Tool’, IEEE Computer Graphics and

Applications, vol. 36, no. 6, pp. 58-68, 2016.

[2] A. Benito-Santos, R. Theron, A. Losada, J. E. Sampaio, and C. Lago-Pefias, ‘Data-Driven Visual Performance Analysis in
Soccer: An Exploratory Prototype’, Front. Psychol., vol. 9, 2018, doi: 10.3389/fpsyg.2018.02416
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[3] R. Therdn Sanchez, A. Benito-Santos, R. S. Santamaria Vicente, and A. Losada Gomez, ‘Towards an Uncertainty-Aware Visualization in the Digital
Humanities’, Informatics, vol. 6, no. 3, p. 31, Sep. 2019, doi: 10.3390/informatics6030031.

[4] A. Dorn et al., ‘A project review under the focus of complexities on the example of ExploreAT!, presented at the Digital Humanities 2019, Utrecht, 2019.

[5] A. Benito, A. Dorn, R. Therdn, E. WandI-Vogt, and A. Losada, ‘Shedding Light on Indigenous Knowledge Concepts and World Perception through Visual
Analysis’, in Digital Humanities 2018 Book of Abstracts, Mexico City, Mexico, 2018, pp. 537-538.

[6] A. Benito, R. Therdn, A. Losada, E. WandI-Vogt, and A. Dorn, ‘Exploring Lemma Interconnections in Historical Dictionaries’, presented at the 2nd
Workshop on Visualization for the Digital Humanities (VIS4DH), 2017.
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Interdisciplinarity and language

* As a result of the increasing specialization in the sciences,
many researchers have turned their attention to other
disciplines, producing novel inter-disciplinary
collaborations.

« Within these collaborations, the use of language and the
acquisition of communication skills has been identified as
key in the success of these research endeavors [8].

[8] Bracken, L.J., Oughton, E.A.: "What do you mean?' The importance of language in developing interdisciplinary
research. Transactions of the Institute of British Geographers 31(3), 371{382 (Jul 2006).
https://doi.org/10.1111/j.1475-5661.2006.00218.x



Document search

What are you looking for? a

* One or more keywords are matched against documents metadata.

» Current interfaces limit the browsing experience to receiving a series of keyhole

views of a corpus.

* Wrongly assume a research focus can always be expressed with a combination of

keywords.
» Cold-start problem.




Excess of information

 Scientists devote a i
substantial amount of their
work to the querying and
browsing of large online
collections of research .
papers. v = o
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S Ci e n t i fi C p u b I i Cati O n S (F:ﬁ':lnf; fyu:;%::;?[::(:‘rix“]glxgrl::];(;l{];)udl number of cited references from 1650 to 2012

doubles every 9 years [9].

[9] ‘Global scientific output doubles every nine years : News blog’. http://blogs.nature.com/news/
2014/05/global-scientific-output-doubles-every-nine-years.html (accessed Nov. 25, 2020).



Interdisciplinary documental search
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social network analysis "1 homology

explorative search

LDA
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topic models GIS choropleth
text visualization cartography labeling
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Keywords

* Descriptive terms, given as metadata, that authors
freely assign to their papers to make them
discoverable and distinguishable from others.

« They make up a tiny, highly-condensed language of science.

« They encode expert knowledge by the authors.
* They are concise summarizations of the concepts
described in a paper.
* The process by which humans extract keywords from
academic texts remains mostly unknown to this day
[10].

[10] J. Chuang, C. D. Manning, and J. Heer, ““Without the Clutter of Unimportant Words”: Descriptive Keyphrases for Text Visualization’, ACM Trans.
Comput.-Hum. Interact., vol. 19, no. 3, p. 19:1-19:29, Oct. 2012, doi: 10.1145/2362364.2362367.



Keywords

« Keywords are often used to build literature reviews,
mapping studies, or surveys on a given field of
science.

* However, its use in certain situations has negative
implications on document discoverability [11].

* This calls for novel approaches that address these
limitations while exploiting the beneficial properties
of keywords, understood as valid, human-produced
summarizations of a piece of text.

[11] K. El-Arini and C. Guestrin, ‘Beyond Keyword Search: Discovering Relevant Scientific Literature’, in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2011, pp. 439-447, doi: 10.1145/2020408.2020479.
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(b) Centrality

« Keywords have been employed by other visualization researchers in the past

1. To improve communication among different visualization sub-groups, and

2. To facilitate the process of understanding differences and commonalities of the various

research sub-fields in visualization.

[12] P. Isenberg, T. Isenberg, M. Sedlmair, J. Chen, and T. Moller, ‘Visualization as Seen through its Research Paper Keywords’, IEEE Transactions on

Visualization and Computer Graphics, vol. 23, no. 1, pp. 771-780, Jan. 2017



Background

Firle, W. (1900), The Fairy Tale [Oil on canvas]



Problem-Driven visualization research
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Interdisciplinary communication

A) Interdisciplinary Communication Issue

Problem Space _ a Design Space

_ @———% solution inside solution space
Solution Space ® % missed solution (outside solution space)

[13] S. Simon, S. Mittelstddt, D. A. Keim, and M. SedImair, ‘Bridging the gap of domain and visualization experts with a Liaison’,
Eurographics Conference on Visualization (EuroVis 2015, Short Paper), Cagliari, Italy, 2015, vol. 2015.



Methodology transfer

I

: . . . n" . My /
Figure 13. Java class file (bytecode) * Many visualizations are "domain-agnostic

because:

* they aim to support generic analytical tasks (e.g.,

comparison or establishing relationships).

* they efficiently exploit the human visual channel
Figure 15. DNA sequence to augment the user’s cognition capabilities.
» For these reasons, other visualizations
created to support a certain task in a

given domain might be successfully
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Figure 9. Arc diagram for music applled to other domains.

[14] M. Wattenberg, ‘Arc diagrams: Visualizing Structure in Strings’, in IEEE Symposium on Information Visualization, 2002.
INFOVIS 2002., Oct. 2002, pp. 110-116, doi: 10.1109/INFVIS.2002.1173155.



Methodology transfer

Domain Design Space

Existing Solutions

Methodology Transfer

Music Design Space

CLASSICAL MODERN e R T R

Mozart, Prokofiev, Fugit

[15] M. Miller, H. Schafer, M. Kraus, M. Leman, D. A. Keim, and M. El-Assady, ‘Framing Visual Musicology through Methodology
Transfer’, Proceedings of the Workshop on Visualization for the Digital Humanities (VIS4DH) at IEEE VIS 2019, Oct. 2019.



Methodology transfer
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[15] M. Miller, H. Schafer, M. Kraus, M. Leman, D. A. Keim, and M. El-Assady, ‘Framing Visual Musicology through Methodology
Transfer’, Proceedings of the Workshop on Visualization for the Digital Humanities (VIS4DH) at IEEE VIS 2019, Oct. 2019.



Literature-Based discovery

B-concepts

A-concept
Fish QOil

C-concept
Raynaud’s

Modern automatic approaches employ similarity scores derived from

word embeddings (e.g., word2vec, Glove) to make their findings.

[16] D. R. Swanson, ‘Fish Qil, Raynaud’s Syndrome, and Undiscovered Public Knowledge’, Perspectives in Biology and Medicine, vol. 30, no. 1, pp. 7—
18, 1986, doi: 10.1353/pbm.1986.0087

[17] M. Thilakaratne, K. Falkner, and T. Atapattu, ‘A Systematic Review on Literature-based Discovery’, ACM Computing Surveys (CSUR), Dec. 2019
[18] M. Thilakaratne, K. Falkner, and T. Atapattu, ‘Automatic Detection of Cross-Disciplinary Knowledge Associations’, Jul. 2018, pp. 45-51,
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isual text analytics (VTA)
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[19] F. Heimerl, M. John, Qi Han, S. Koch, and T. Ertl. DocuCompass: Effective . I Ao o Chton e .0 pvelo o g
exploration of document landscapes. In 2016 IEEE Conference on Visual ove mowe
Analytics Science and Technology (VAST), pages 11-20, October 2016. v el seing Mecine apars enes, s e el o relenca e

[20] J. He, Q. Ping, W. Lou, and C. Chen, ‘PaperPoles: Facilitating adaptive
visual exploration of scientific publications by citation links’, Journal of the
Association for Information Science and Technology, vol. 70, no. 8, pp. 843—
857, 2019, doi: 10.1002/asi.24171.

LU R

[21] E. Alexander, J. Kohlmann, R. Valenza, M. Witmore, and M. Gleicher,
‘Serendip: Topic model-driven visual exploration of text corpora’, in 2014
IEEE Conference on Visual Analytics Science and Technology (VAST), Paris,
France, Oct. 2014, pp. 173-182, doi: 10.1109/VAST.2014.7042493.

* Novel specialization of a larger research discipline known as visual analytics (VA) that focuses on
structured and unstructured textual data.

* Employs NLP, visualization, and text mining techniques to enhance the comprehension of large
bodies of text.

« Highly related to the exploration and analysis of scientific corpora (full-texts and metadata).

* And also to Digital Humanities and cultural heritage!



Open questions in VIS4DH research

(Adapted and extended from [22])

1.  How can interactive visualizations support new questions, and new scales of

research, in the DH community?

2. How can we encourage DH scholars to seek out visualizations, or collaboration

with visualization researchers?

3. How does visualization with a DH focus differ from general research in the

visualization community?

4. How can we remove obstacles for humanities scholars wanting to use visual

analytics approaches in their research?

5. How can we remove obstacles for visualization practitioners willing to get

involved into DH research?

[22] A. J. Bradley et al., ‘Visualization and the Digital Humanities: Moving Toward Stronger Collaborations’, IEEE Computer Graphics and
Applications, vol. 38, no. 6, pp. 26—38, Nov. 2018



Methodology

Bosch, H. (ca. 1494) The Extraction of the Stone of
Madness [Oil on board]



Methodology

1. Observation: Development of user needs and other insight through the deep
study of a novel area of PDVR (visualization for the digital humanities).

2. Hypothesis formulation: Design of novel linguistic, text mining, and visual
methods that satisfy the user needs gathered in 1.

3. Observation gathering: Evaluation of the methods developed in 2 with data

originating in the VIS4DH domain.

4. Contrasting the hypothesis: Measure the reproducibility of the methods and

observations with data from other PDVR domains.

5. Hypothesis proof or refusal: Acceptance, rejection, or modification of the

developed techniques. Previous steps shall be repeated if necessary.

6. Scientific thesis: Synthesis of the results to allow the appropriate communication

and reproducibility of the findings obtained in previous steps.



Objectives and
Main Hypotheses

Goya, F. (1806) The Death of Julius Caesar [Oil on canvas]



Obijectives

* To understand current challenges in interdisciplinary
visualization research.

* To develop a methodology to detect, frame and map
novel expressions of PDVR.

* To study the properties of the language defined by
author-assigned keywords.

* To accelerate knowledge discovery in the document
exploration task when performed in an
interdisciplinary research context.




Main hypotheses

* It is possible to apply literature-based discovery and
linguistic analysis techniques to support, by
computational means, the transfer of methodologies
between application areas in visualization research.

e Itis possible to build interactive systems that mimic the
sensemaking model based on methodology transfer
adopted by interdisciplinary researchers in the
document exploration task.




Main hypotheses
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Data Collection

Furse, C.W. (1903) Sir Francis Galton [Qil on canvas]



Data collection

- Aimed at obtaining a representative dataset of research interests in a key

PDVR discipline like visualization for the digital humanities (VIS4DH).

 DH are hard to define

21 definitions in the 2012 edition of Debates in the Digital Humanities.

There is not a canonical definition.

« How could we survey a topic that could not be defined?

Paradox: knowing the input query to obtain relevant documents implied knowing

the results of the study.
Many DH publications are not indexed in the typical scientific paper databases.

DH and VIS authors publish their results in different venues, journals and formats.



Sampling relevant publications

 We obtained a sample of publications made by two types of
researchers:
« A)Visualization researchers with a “declared” interest in DH (VIS4DH)
 B) Digital humanists with a “declared” interest in visualization (DH4VIS)

* Two main venues:

« A) Workshop on Visualization for the Digital Humanities (VIS4DH
Workshop).

« B) Alliance of Digital Humanities Organizations

« DH Conference

 Digital Humanities Quarterly (DHQ)



Keywords: Network visualization, logs, understanding users, his- pningful Spatial Structural Aspects %
.. .. e 7, <8 Analyzing Visual Mappings Grounding Users in Interpretive Acts:
tory, digital humanities. e Specific Concept Maps é of Traditional and Alternative Music Notation
Vanessa Sarano Moinero' _ Berjamin Bach' ecle Dufounaue® Georgia Panagiotidou and Andrew Vande Moere Lessons Learned in the Iterative Design of a Digital Collection

oD oot

. Julianne Mendoza, and Walter G. Andrews.

|Index Terms— |nformat|on visualization, digital humanities, concept mapping, design articulations, perception}

S = e B - | ‘ ‘ ‘ e o
1 =

, ® | £ [

I, \% 5”!-‘- L

S T © "7 Index Terms—visual exploration, timeline, historical documents, digital collection, interview study, interpretation, user researchl
originat e S o el ._?::_m’:: \ L \ T J,_,__/ ™ : '—“ - ‘
Figure 1 yout. Using g 3

Abstract—Recognizing commonaltiis across knowledge-driven outcomes tha result from faciltated group workshops such as
L ...

st o the . of he 10, contry i seve a2
i this paper. vie

=1 Index Terms—Music Analysis, Music Notation, Visual Mapping, Visualization Pipeline, Information Visualization, DQS|gn Guidelines [’?:1:;‘““‘" B :“’“’""“’“‘“’“”““”"‘

for the colisction. ct upon the impiications of our

S S s SR — S A U———
'of oxempl retancd o o Do Vet apoinde ol ekl Gmencion £ Vi ko OO 0 RGN Qs i oot veage, o onco0R0" T R ot G ot Torotion oo 1
‘when they become transposed or combined acress multiple concoept maps. Despito the small number of . visual channols,
> i e et : teaarch s Index Terme —visual oxploration, timeline, historical documents, digital callecton, interview study, intorprotation, usar resoarch)
Framing Visual Musicology through Methodology Transfer visualization. This research is not only relevant for any digitization process that requires the merging of manually derived “roana.
. Index Music Notation, Visual Mapping. Visualization Pipoine, Information Visualization, Dosign Guidolnos

Mashias M Hann Schlr: Matas s s Laman Danie Ko

ey index Torms . concopt mapping. . percoptior SHOW AMBIGUITY
Maluabl Visualization and Digital Humanities:
Balancing Act

Stofan Janicke ) — ~ I show ambiguity I
dar 3

Index Terms—visual search, visualization, digital humanities, wsuahzatmn plpehne
m

Katharine Coles

Index Terms— D|g|ta| humanltles poetry aesthetlcs V|sual|zat|on rhyme, sound, collaboration, assessment, evaluation,

Keywords: Visual musicology, methodology transfer, visualization, s methodology
. . . L H
music analysis, design space, research opportunities 8- ——— =E'§' 5 ———"
i 5s e dgital— =
= H
° . . . .. e
ol o L L L “~ | Index Terms—Digital humanist, digital humanities conference, survey| ='™
e T ition paper describes the Poerfiage (1) project. a collaboration between computer scientists and poets that has
Tesue o8 00 for anaE) and Vel compe S eabanship ORI dSCUSSe VATLS VEYS
w Soholrs ar Ushg o esuin 100 1 Schclary ad céege work: and 1o 1 461651 1 unao Gochuray dlrences
o - i o he polonl 1 poce ul ey limatly st h foserch polntalof ucn colaboraons. The auhr o by
o roper i,
TR T oo e ot e T o worde. i son IndexTerms —Digial humanites. poety. aesihotcs. visuaization, yme, sound, colaboraton, assossmen, evaluaton)
o e
e T me—r— it ol of g oo o i Index L AS: i for the Multi

Prosopography Data

I Index Terms—Visualization, inclusion, digital humanities, critical perspectives, feminism.

u Salisu', Matihias Schiogr’, and Eva Mayr'

I Index Terms—Data visualization, Digital humanities, Art history, Digital art history

Catherine D’Ignazio and Lauren F. Klein

Houda Lamgaddam, Koenraad Brosens, Frederik Truyen, .!os Beerens, Inez de Prekel and Katrien Verbert . 1 3 1

a 4 Abstract—inthis paper, w bagin to outine how feminist theory may be proauctiiely appied | JK€yWords: Biography data, prosopography data, information
Abstract—The recent years have seen a rise in humanities interést for digital data analysis tools, including data visualization. However ~ Practice- O‘her;“h""bgy and d;s'g"bg"smfd fields such ‘a: Sct,"ce ~1deecr[| ::::;gy Stud visualization. visual analvtics. information inteeration. mental
in the field of art history, major resistance to, and distrust-of digital tools are still prevalent. Through collaboration and discussion ave begun to minist'principles into their reseay 5 yt 5 g 5
with art historians, we identified the unique perspective of dlglia\ art historians, the specific nature of data handled in the field, and  but rather draws our attention to qusshons of eplstemulog, = who is included in dominant]
the culture behind such a wide-spread reticanca, 1T this paper, we introduce this perspective to the growing discussion around the and whose we describe potential applications of fof TNOde]
collaboration between the fields of data d digita humanities. We rinciplos fordgial ool it botor ator  design pocess as wel s 1o shape he outputs from e process. -
1o the needs of at history researchers, and ways for art historians to foster a culturs that is more open to digital ools.

Index Terms—Data visualization, Digital humanities, Art history, Digital art history

Index Terms—Visualization, inclusion, digital humanities, critical perspectives, feminism.

15t Workshop on Visualization for the Digital Humanities 3" Workshop on Visualization for the Digital Humanities

Monday, 24 October 2016 - Baltimore, Maryla! Sunday, 21 October 2018 - Berlin, Germany

2"d Workshop on Visualization for the Digital Humanities [l 4 Workshop on Visualization for the Digital Humanities

Monday, 02 October 2017 - Phoenix, Arizona, USA Sunday, 20 October 2019 - Vancouver, Canada



I

Aic)
P

TEI files matching the regular expression [\Vv]isua® in their (1) title, (2) list of keywords, (3) list

of ADHO topics (pre-defined taxonomy).

a Language Decomposition </title>

Visual| Analytics; Blogging;</term>

(1) <title type="article">Language DNA:||Visualizing
(2) v<key&ords scheme="ConfTool" n="keywords">
<term>Topic Characterization; Data Mining;
</keywords>
(3) V<key%ords scheme="ConfTool" n="topics">

<term>interface and user experience design</term>

<term>literary studies</term>
<term>text analysis</term>

<term> esentation</term>
<termjvisualisationf{:/term>
<term> notation</term>

<term>English</term>

-l DTYTUT TTOTTOTIES ZUTO
‘é Krakéw, 11-16 July ]

SFEEDTTIZULO

Wl Mexico City | 26-29 JUNE

digital humanities-quarterly



Seed Dataset

* DH Conference (214)
*| Longs (57)
* Shorts (63)
* Panels (12)
* Posters (68)
* Workshops (14)

« DHQ(15)

* Longs (15)

229 publications

«| VISADH (47)

47 publications

276 publications

Analysis methodology

Publications frequency
analysis
Temporal analysis

References Dataset

*: Journal articles

*: Conference papers
* Books

* Online resources
e Others

Journal articles and
conference papers with
author-assigned keywords

1981 cited works

571 publications

i ARD <=

Keywords frequency analysis

Co-word analysis




Keyword frequency analysis

Tops20bnbonusle d&keyatsl §179 ninatstal)

* The major DH themes are
represented:
* Text visualization
« Distant reading
* GIS, Mapping
*  Networks
« Two main concerns of

VIS4DH also appeared:

 Evaluation
« Collaboration

Uncertainty?




Keyword analysis

Tokenization &
Stemmlng dynamic knowledge
M Author keywords were 50 heritage know|edge
tokenized and stemmed knowledg knowledge discovery
using the Porter knowledge representation
algorithm. 49
* This had the positive . -
: ata dramatization
faffect of compressing the | drama { dramatic texts
input data and relating n-
grams with coincident
parts. B  chinese literature
« Stems are similarly contemporary literature
distributed to keywords chinese literature
Allowed us to avoid an literatur —  contemporary literature
. . . b literary chinese
|nten$|ve manual C0d|ng german |iterarx history
and classification of the __ literary genres
keywords as done in

previous studies [12].

[12] P. Isenberg, T. Isenberg, M. Sedlmair, J. Chen, and T. Méller, ‘Visualization as Seen
through its Research Paper Keywords’, IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 1, pp. 771-780, Jan. 2017



Co-occurrence analysis

110 1-Grams with f; > 6

1. Term-doc matri
. X 1 K109 K110 Kl KZ K109 KllO
. ES‘I‘I uralque 1-gram
eywords
* 110 1-grams appearin
more tﬂan a thlt?(laosholdg
frequency (6). |
+ 375 documents.
2. Keyword correlation o
matrix —
« Scipy's corrcoef function. 3
3. Hierarchical clustering
*  Ward's method.
* Sq. Euclidean distance.
« Max distance criterion (<95%
max distance between any
two pairs)
4. Keywords network @ density
+ Edges show positive O
correlations. o
5. Strategic Diagram o o @
1. Density
2. Centrality centrality ®) .
6. Pruned keywords network O
+ R=0.20

©

[12] P. Isenberg, T. Isenberg, M. Sedlmair, J. Chen, and T. Mdller, ‘Visualization as Seen through its Research Paper Keywords’, IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 1, pp. 771-780, Jan. 2017



Strategic diagram

ID Members (by frequency)
1 user, inform, interfac, retriev, search, system, content, space, ] @

automat ]
2 < languag, process, natur
3 imag, annot, graphic, tool ]
4 e (o)
5 studi, literari, literatur, linguist, corpu = a
6 recognit, relat, extract, featur, name 3 f ? @
7 <_evalu, graph, chart, multipl __— ] G d i @
8 ] Q
9 S f ] =) 0.1 j
10 text, mine, vector, word ] @Q
11 model, edit, topic, sch i .
12 manag, databas, plan, architectur, project ]
13 design, research, scienc, knowledg, technolog, philosophi, softwar o]
14 mediev, align, dynam, program e
15 histori, collabor, art, archiv, learn, pattern, librari, discoveri Centrally

H A
16 map, media, spatial, 3d, archeolog, gi, virtual, mobil, discours density
. quadrant 3 quadrant 1

17 represent, classif, narr, detect peripheral and developed central and developed
18 network, social, commun, critic, cartographi, polit, theori o

i act, video, uncertainti, document, method, layour, ic, centrality
19 tempor, geograph, onlin, structur, concept, educ, queri, cluster quadrant 4 quadrant 2

| i peripheral and undeveloped central and undeveloped
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Results

« A normalized dataset of VIS4DH/DHA4VIS publications and
related works metadata.

» Keywords

* Authors

Publication venues and years
Titles

 Bibliographic analysis
A quantitative analysis of citation metadata
» Titles
* Publication Years
 An analysis of author-assigned keywords
* Quantitative analysis of N-grams and 1-Grams (stems)
« Co-occurrence analysis of 1-Grams (co-word analysis)



Conclusions

« The study of keywords revealed several interesting structural

patterns that characterize the novel field of visualization for the
digital humanities.

« The selection of keywords found in a document is a random draw
from an empirical distribution that resembles a power law (Zipf’s
Law).

- Tokenization and stemming, when applied to keywords,
effectively compress the data relating multi-word phrases with
coincident parts.

* However, it also introduces some errors that are difficult to solve by automatic
means.

* But it makes the analysis process more reproducible (does not require manual
curation/classification as in previous studies [12]).

[12] P. Isenberg, T. Isenberg, M. Sedlmair, J. Chen, and T. Moller, ‘Visualization as Seen through its Research Paper
Keywords’, IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 771-780, Jan. 2017



Publications

 A. Benito-Santos and R. Therén Sanchez, ‘A Data-Driven Introduction to Authors,

Readings and Techniques in Visualization for the Digital Humanities’, IEEE
Computer Graphics and Applications, 2020.

« Status: Published

« DOI:10.1109/MCG.2020.2973945

* Impact Factor (JCR 2019): 1.627

« Subject Category: Computer Science, Software Engineering

* Quartile: (51/108) Q2

* Presented at IEEEVIS 2020. Conference Rating A+ (GII-GRIN-SCIE 2018)

* Indexed in IEEE Xplore.

« A. Benito-Santos and R. Therén, ‘Pilaster: A Collection of Citation Metadata
Extracted From Publications on Visualization for the Digital Humanities’, presented
at the 5% Workshop on Visualization for the Digital Humanities, collocated to
IEEEVIS 2020, Oct. 2020.

« Status: Published
* Indexed in IEEE Xplore.



Visualization &
Visual Analysis
Techniques

Pignatta, G. (1712) Portrait of a Cartographer [Oil on canvas]



Design goals

- D.G.1: Motivate a personalized exploration of scientific corpora
that is tailored to the user’s research aims.

» What kind of knowledge does the user want to extract from a dataset?

« D.G.2: Potentiate the discovery of methodologies that could
potentially be transferred from other existing design spaces to

the source domain.

* How can we measure the degree of transferability of solutions conceived

in other knowledge domains?



Design goals

« D.G.3: Accelerate sensemaking and language acquisition in the

context of PDVR.

« What are the terms that best describe a dataset according to the user’s

level of expertise and grounded knowledge?

« What themes are especially interesting for the user?

« D.G.4: Provide a reading order for discovered documents.

« What documents are the most important for the user?



Distributional similarity

Academic papers
(defined by keywords)
Target Corpus Paper #T1: B-concept,, B-concept,, A-concept, B-concept,, B-concept.
(known to the user)

More similar

Paper S1: B-conceptl, B-conceptz, C-concept,, B-conceptﬂ, B-concept5
(4 matches with T1)

Paper S2: B-conceptl, C-concept,, C-concept,, B-conceptﬂ, B-concept5
(3 matches with T1)

Source Corpus
(to be explored by —

the user
) Paper S3: B-conceptl, C-concept,, C-concept,, C-concept;,, B-concept5

(2 matches with T1)

Paper 54: C-concept,, C-concept,, C-concept,, C-concept;, B-concept;

(1 match with T1) ..
— Less similar

DistribSim (A-concept C-concept,) = 1




High-order co-occurrence

Problem
(a-concept)

Technique 1

(c-concept)

Technique 2

(c-concept)

@® A-Concept (] B-Concept o C-Concept




Exploration model

A) Interdisciplinary Communication Issue

 —
Design Space

Problem Space

@———% solution inside solution space

Solution Space ®—— % missed solution (outside solution space)

‘(" Problem Space Target Domain Design Space

Source Domain

@ Problem or Challenge H Available Solution
¥ Visual Solution ~ @--oeem 3¢ Deducted Solution
@ Unsolved Problems —> Mapping

¥ Unknown Visualizations Solution Space

Previous models

Problem Space

Design Space

T-Literature

—_
—_

Methodology Transfer

11

Problem Space

S-Literature Design Space

& <

(/<> Problem/Design A-concept

Q Problem

* Visual Solution
@ Unsolved Problem
3k Unknown Visualizations

[J/11 Problem/Design B-concept /\//\ Problem/Design C-concept

H Research Paper

Potential Solution
————————> Mapping

Solution Space

Our model



Keyword embeddings

VISADH —

VIS —

Keywords

Compress

tokenization +
stemming

A-concepts

B-concepts

C-concepts

Tokens/Stems

[12] P. Isenberg, T. Isenberg, M. SedIimair, J. Chen, and T. Méller, ‘Visualization as Seen
through its Research Paper Keywords’, IEEE Transactions on Visualization and
Computer Graphics, vol. 23, no. 1, pp. 771-780, Jan. 2017

[23] P. Isenberg et al., ‘Vispubdata.org: A Metadata Collection About IEEE Visualization
(VIS) Publications’, IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 9, pp. 2199-2206, Sep. 2017, doi: 10.1109/TVCG.2016.2615308.

[24] O. Levy, Y. Goldberg, and I. Dagan, ‘Improving Distributional Similarity with
Lessons Learned from Word Embeddings’, Transactions of the Association for
Computational Linguistics, vol. 3, no. 0, pp. 211-225, May 2015.

[25] O. Levy and Y. Goldberg, ‘Neural Word Embedding as Implicit Matrix
Factorization’, in Advances in Neural Information Processing Systems 27, Z.
Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2014, pp. 2177-2185.

Pt =on g e gy O
PPMI(w,c) = maz(PMI(w,c),0) (2)
SPPMI(w,¢) = log % )

/;’/’ R o #( C)a
/,/’ Pa( ) - zc #(C)D‘ (4)

U =50 17l

U
X
X

n' x k




Similarity matrix

Pairwise Distance
Synonym detection
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2. Quality neighborhoods




UMAP 2D projection

UMAP(min_dist = 0.01, n_neighbors = 100) ® A-Concept @ B-Concept @ C-Concept

[26] L. MclInnes, J. Healy, N. Saul, and L. Grossberger, ‘UMAP: Uniform manifold approximation and projection’, The Journal of Open Source Software,
vol. 3, no. 29, p. 861, 2018.



Significant paths

« Significant path: a path that maximizes the similarity
score of all possible paths that connect every c-

concept to a given fixed a-concept.

* The process is repeated for every a-concept until all

a-concepts are assigned a unique path.

* In the end, every a-concept will be related to at

least one c-concept

[

sim(t] ) = 1 — min{}y _ dist(ti. tis1) | (1. tes1) € P)
PeP; i1




Significant paths

L]
ool
. W i
°
P,
1
i
Lo
3
®
° T‘;q
[ ] 1
®o
° \’}YX
3
Py

e Paths with coincident intermediate nodes are

co-retweet
co-citation
controversy
duplications
geography-based
interreflections
mood
paper-reference
pathfinder
socialnetsense
tree
tree-based
twitter

encyclopedia
adjacency
attack
automotive
betweenness
centrality/centralized
concentration
confluent
dataflow
financial
grand
intrusion
lenses
market
modular
paradigm
play
readability
security
triage
vulnerability
world-in-miniature

faces
adversarial
anonymization/anonymity

temporospatial
integration / integral /
integrating / integrated

visaml

applied photogrammetry
artificial astronomy
active/activity boids
attention/attentionally context-aware
awareness/aware cosmology
blue exponents
call ftle
chromosome fusion
debugging finite-time
experimental/experimentation hyperspectral
explainability/explainable ine |
explanatory lagrangian
forests/forest oil
graphlet particles/particle
healthcare photogrammetry
inference ftexture/texturing/textured
large-scale tunneling/tunnel
vectorfield
vrml
wind
privacy
q-network
random
r ion/rec
retweeting bibliography
rule close/clz?sed
sampling/sample/sampled allocation
situation/situational/situated atomistic
user-steerable body
box

visual-interactive

wormhole

hypergraph
2d1/2
directx
egocentric
essential
faceted
k-d
multi-focus+context
recall
size
slider
streamgraph
timeline/timelines
updating
undo

editor
concept
ajax
color-contrast
common
confusion
contact
cue/cues
deficiency
embedder
exemplar
expected
hasse
incomplete
interdomain
matrices
mds
node-link
photos
proximity
recoloring
results/result
seeking
spring
ui

under their common minimum spanning tree [1].

 Produces a variant of spectral clustering.

cartesiangrid
centered/centering
cubic
evenly-spaced
face-centered
latent
lattice
propagation
strategy
topic/topics

audiovisual
collection/collective
co-located
entity-based
foraging
intelligent/i i
meta-visualization
note
tabletop
treatment
workspace

merged



Significant paths

d2= { t3, t4,...}

-~
-~
~
-~
~
-
~
~

S~
-~
-~
-~
-~
-~
-~
-~
-~
S~
-~

d3= { t1, t2, t3, t4}

« Each path is projected into the plane using the Kamada-Kawai force-directed graph layout
algorithm
« Distances in the plane represent distributional similarity.

« After keywords have been placed, documents in the same subspace are projected

accordingly by triangulating their position (i.e., geometrical centroid in Euclidean space).
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Significant paths: problems

 Although the significant paths technique produced interesting

results, it could not operate in interaction times.

* The visualization was limited in interactivity and it did not
allow to see the contexts in which the represented keywords
and documents appeared in the corpora.

« This synoptic task is key to get a full understanding of the

relationship between the two collections [1].

[27] P. Federico, F. Heimerl, S. Koch, and S. Miksch, ‘A Survey on Visual Approaches for Analyzing Scientific Literature and Patents’, IEEE
Transactions on Visualization and Computer Graphics, vol. 23, no. 9, pp. 2179-2198, Sep. 2017, doi: 10.1109/TVCG.2016.2610422.



VTA prototype GlassViz

* Interactive VTA application

* Supports the inspection of cohesive local A-concept quality

neighborhoods called “entry points.”

e Linked-Views system:

« Documents and contexts

* Rank-frequency lists.

* Entry points: semantically-cohesive keyword groups

« Each entry point is shown in a designated area of the main view.

« Displayed using force-directed layout (Fruchterman & Reingold).



Quality neighborhoods

® A-Concept @ B-Concept @ C-Concept gt
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[28] E. Alexander and M. Gleicher, ‘Task-Driven Comparison of Topic Models’, IEEE Transactions on Visualization and Computer Graphics, vol. 22, no.

1, pp. 320-329, Jan. 2016
[29] F. Heimerl and M. Gleicher, ‘Interactive Analysis of Word Vector Embeddings’, Computer Graphics Forum, vol. 37, no. 3, pp. 253-265, Jun. 2018



Quality Neighborhoods
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Entry Points
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Entry Points
Click and drag while pressing shift to pan & zoom. Hold alt/option(X) to brush.
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tele-immersion

reality
augmenteq

three-dimensio...

justice
Entry point
DH iry3D: Multidimensional Research and Education in the Digital Humanities
TowArd a compelling sensation of telepresence: demonstrating a portal to a distant (static) office
b t Aygmenting the University: Using Augmented Reality to Excavate University Spaces
ocuments in DH: Extended Reality in the Digital Humanities
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llaborative augmented real

view HMD#2
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Tokenized Document Keywords
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3D-mouse

virtual object
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Show the interesting

* Entry points display the most cohesive inter-collection

keyword associations as found by the model.

 They generally connect domain problems to potential

visualization solutions and problems in other domains.

* They also capture many significant themes of the domain

the user is familiar with.
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Publications

« A. Benito-Santos and R. Therén Sanchez, ‘Cross-domain Visual Exploration of
Academic Corpora via the Latent Meaning of User-Authored Keywords’, IEEE
Access, vol. 7, pp. 98144-98160, 2019.

Status: Published
DOI: 10.1109/ACCESS.2019.2929754
Impact Factor (JCR 2019): 3.745

Subject Category: Computer Science, Information Systems
Quartile: (35/156) Q1

» A. Benito-Santos and R. Therdén, ‘GlassViz: Visualizing Automatically-Extracted
Entry Points for Exploring Scientific Corpora in Problem-Driven Visualization
Research’, presented at the 2020 IEEE Visualization Conference (VIS), Oct. 2020.

Status: To be published in IEEE Xplore (Conf. proceedings)
Conference Rating A+ (GII-GRIN-SCIE 2018)



Applicability of
the findings to
knowledge
defragmentation

Llull, R. (ca. 1295), Arbre de ciencia (The Tree of Science).
Image from a 1505 edition of the book.



Fragmentation

 The increasing specialization of visualization research is motivating the

fragmentation of the field into isolated communities of practice.

 Potentially redundant solutions for generic tasks are being created, leading to

a waste of time and human resources.

* In a new study, we provided evidence that our findings are a valid alternative

to identify commonalities and differences between such communities with the

aim of bringing them together.
* We adapted GlassViz to support this task.

* We collected 3 more datasets representative of different areas of PDVR (BioVis,

SportsVis, VizSec).



Reusing the exploration model
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Dataset  # Documents # Unique Tokens Avg. Keyword Tokens per Doc. # Exclusive Tokens

VIS4DH 221 539 4.47 £0.99 230 (42.7%)
BioVis 69 284 457 +1.85 72 (25.4%)
SportsVis 59 225 473 £1.55 55 (24.4%)
VizSec 175 405 463 +1.75 125 (30.9%)

VIS 2253 2508 4.66 £1.61 1864 (74.3%)

By Vis
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Main contributions

« A community-centered methodology

and a set of unsupervised methods

to map novel and diffuse

interdisciplinary research areas. e st
publications and citation

metadata on visualization for
the digital humanities

« A data-driven characterization of the

state-of-the-art in VIS4DH.

« A curated dataset of ~2,000 core
VIS4DH works.

Seed Dataset

https://visusal.github.io/pilaster/
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Main contributions
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* Visual Solution
@ Unsolved Problem

3 Unknown Visualizations
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* A revised communication model for PDVR that

employs Swanson’s ABC model to describe the

channel shared by researchers in the two sides of

a PDVR collaboration.

An automatic, unsupervised computational

method that relies on distributional similarity
found between paper keywords to detect and

display potential methodology transfers that are

available in the literature.

Two psychometric scaling and visualization

techniques for extracting and representing

interdomain knowledge from proximity data.
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A fully-functional visual text analytics interface prototype, GlassViz, for document:

* Implements the sensemaking model of methodology transfer typically adopted by interdisciplinary researchers.

* Takes advantage of the communicative power and expert knowledge encoded in author-assigned keywords.

* Addresses the cold-start problem by skipping input a specific query string to start the exploration.

* Motivates a progressive learning of interesting vocabulary that goes from the known to the unknown.
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« A modification of GlassViz to assess fragmentation in VIS research.

* Facilitates the detection of related studies employing similar algorithms and visualization techniques.

 Can be used to



Future work

Joint projection of keywords and documents
(UMAP + HDBSCAN)

[26] L. Mclnnes, J. Healy, N. Saul, and L. Grossberger, ‘UMAP: Uniform manifold approximation and projection’, The Journal of Open Source Software,

vol. 3, no. 29, p. 861, 2018.
[30] L. MclInnes, J. Healy, and S. Astels, ‘hdbscan: Hierarchical density based clustering’, The Journal of Open Source Software, vol. 2, no. 11, Mar. 2017,

doi: 10.21105/joss.00205.
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UpSet: Visualization of Intersecting Sets
Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, and Hanspeter Pfister

i ] Set Menu

v R 2
‘ Combination Matrix

Set View Element View

[31] D. Holten and J. J. V. Wijk, Visual Comparison of
Hierarchically Organized Data’, Computer Graphics
Forum, vol. 27, no. 3, pp. 759-766, 2008, doi:
10.1111/}.1467-8659.2008.01205.x.

[32] T. L. Pedersen, ‘Hierarchical sets: analyzing
pangenome structure through scalable set visualizations’,
Bioinformatics, vol. 33, no. 11, pp. 1604-1612, Jun. 2017,
doi: 10.1093/bioinformatics/btx034.

[33] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and
H. Pfister, ‘UpSet: Visualization of Intersecting Sets’, IEEE
Transactions on Visualization and Computer Graphics, vol.
20, no. 12, pp. 1983-1992, Dec. 2014, doi:
10.1109/TVCG.2014.2346248.

[34] J. R. Conway, A. Lex, and N. Gehlenborg, ‘UpSetR: an
R package for the visualization of intersecting sets and
their properties’, Bioinformatics, vol. 33, no. 18, pp. 2938-
2940, Sep. 2017, doi: 10.1093/biocinformatics/btx364.
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Insight-Based evaluation
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[35] P. Saraiya, C. North, and K. Duca, ‘An insight-based
methodology for evaluating bioinformatics
visualizations’, |IEEE Transactions on Visualization and
Computer Graphics, vol. 11, no. 4, pp. 443-456, Jul.
2005, doi: 10.1109/TVCG.2005.53.

[36] [1]R. Blanch, R. Dautriche, and G.
Bisson, ‘Dendrogramix: A hybrid tree-matrix
visualization technique to support
interactive exploration of dendrograms’, in
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